4ml
Evaluation:
Random Forest
#Input is TfidfVectorizer of data from sklearn.ensemble import RandomForestClassifer #RandomForestClassifer.feature_importances_ are great for understand the ml RandomForestClassifier(n_estimators=10, criterion=’gini’, max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=’auto’, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None)
CrossValidation
from sklearn.model_selection import KFold, cross_val_score
rf = RandomForestClassifer(n_jobs=-1) #parallelize
k_fold = KFold(n_splits=5)
cross_val_score(rf, X_features, labels, cv=k_fold, scoring='accuracy', n_jobs=-1)Holdout Test Set
Grid Search
Grid Search And Cross Validation
Last updated