Neural Nets

Model

class LinearRegressor(nn.Module):
    def __init__(self, input_dim, hidden_dim, output_dim):
        super(LinearRegressor, self).__init__()
        self.h1 = nn.Linear(input_dim, hidden_dim)
          self.h2 = nn.Linear(hidden_dim, output_dim)

    def forward(self, x):
        x = self.h1(x)
        x = F.tanh(x)
        x = self.h2(x)
        return F.log_softmax(x)

model = LinearRegressor(1, 1, 1)

Functions

model.zero_grad() #zero grad on all hidden layers(self attrs)
model.parameters() #can iterate over inner layers

Loss & Optimizer

Train

Test

Model Examples

Intialize Weights

Last updated