Neural Nets
Model
class LinearRegressor(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(LinearRegressor, self).__init__()
self.h1 = nn.Linear(input_dim, hidden_dim)
self.h2 = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
x = self.h1(x)
x = F.tanh(x)
x = self.h2(x)
return F.log_softmax(x)
model = LinearRegressor(1, 1, 1)Functions
model.zero_grad() #zero grad on all hidden layers(self attrs)
model.parameters() #can iterate over inner layersLoss & Optimizer
Train
Test
Model Examples
Intialize Weights
Last updated