GPU Optimization
device = "cpu"
if torch.cuda.is_available():
device = "cuda"
elif torch.backends.mps.is_available() and torch.backends.mps.is_built():
device = "mps"MPS
# MacOS 12.3+
print(torch.backends.mps.is_available())
# PyTorch installation built with MPS
print(torch.backends.mps.is_built())
device = torch.device("mps")CUDA
Check whether GPU accelaration with CUDA available
Simply move inputs, labels, and model to GPU add parallelization and speed, ez
if torch.cuda.is_available():
a = torch.LongTensor(10).fill_(3).cuda()Usage
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
cuda = torch.device('cuda') # Default CUDA deviceModel
net.to(device)Inputs
At every step
inputs, labels = inputs.to(device), labels.to(device)Tensors
Same
d = torch.randn(2, device=cuda2)
e = torch.randn(2).to(cuda2)
f = torch.randn(2).cuda(cuda2)Last updated